This is the SPECIAL-FUNCTIONS Reference Manual, version 1.2.0, generated automatically by Declt version 4.0b2.
Copyright © 2019-2022 Steve Nunez
Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the section entitled “Copying” is included exactly as in the original.
Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be translated as well.
This program is distributed under the terms of the Microsoft Public License.
The main system appears first, followed by any subsystem dependency.
Special functions in Common Lisp
Mathematical Special Functions
Steve Nunez <steve@symbolics.tech>
(GIT https://github.com/Lisp-Stat/special-functions.git)
MS-PL
Special functions written in common lisp with accuracy equal to Boost, Python and Cephes.
1.2.0
Files are sorted by type and then listed depth-first from the systems components trees.
special-functions (system).
pkgdcl.lisp (file).
special-functions (system).
utils.lisp (file).
special-functions (system).
erf.lisp (file).
special-functions (system).
gamma.lisp (file).
special-functions (system).
lanczos.lisp (file).
special-functions (system).
log-gamma (function).
log-gamma.lisp (file).
special-functions (system).
factorial (function).
Packages are listed by definition order.
common-lisp.
Definitions are sorted by export status, category, package, and then by lexicographic order.
Returns the error function of n
Return the complementary error function erfc(x) = 1-erf(x)
Return the factorial value X! for X <= MAX-FACTORIAL; DOUBLE-FLOAT-POSITIVE-INFINITY if x < 0. X must be an INTEGER.
Return gamma(x), x <= +MAXGAMD+; NAN/RTE if x is a non-positive integer
Return the normalised incomplete gamma functions P and Q, a>=0, x>=0
P(a,x) = integral(exp(-t)*t^(a-1), t=0..x )/gamma(a)
Q(a,x) = integral(exp(-t)*t^(a-1), t=x..Inf)/gamma(a))
dax = x^a*exp(-x)/gamma(a) (prefix factor)
Returns three values:
P is the first value, Q the second, DAX the third, e.g. (values p q dax)
Return the inverse function of erf: (erf (inverse-erf x)) = x, -1 < x < 1
Return the inverse function of erfc: (erfc (inverse-erfc x)) = x, 0 < x < 2
Return the Lanczos sum for x, exp(g). If UNSCALED is non-nil, return the unscaled result
Return the logarithm of gamma(x)
Return the normalised lower incomplete gamma function P(a,x), a>=0, x>=0 P(a,x) = integral(exp(-t)*t^(a-1), t=0..x)/gamma(a)
Return x^a * exp(-x) / gamma(a)
Return the normalised upper incomplete gamma function Q(a,x), a>=0, x>=0 Q(a,x) = integral(exp(-t)*t^(a-1), t=x..Inf)/gamma(a))
Maximum argument for gamma
Table of factorials for integer values up to 100
Convert the (unsigned-byte 64) bit representation into a native double-float
Returns the bit representation of the double-float X as an (unsigned-byte 64)
p/q := exp(x^2)*erfc(x), 1<=x<=128
Return 1/gamma(x) for |x| < 0.03125
Return gamma(x), |x| <= 13, x negative integer produces div by 0
Partial derivative with respect to x of the incomplete gamma function
Return value of inverse error function: erf_inv(p) if p <= 0.5, erfc_inv(q) otherwise
Temme/Gautschi code for P(a,x), dax = x^a*exp(-x)/gamma(a+1) Returns (values p q)
Incomplete gamma functions for large A and A near X
Continued fraction for Q(a,x)
Calculates normalised Q when a is a half-integer for a < min(30, x+1)
Return Q(a,x) when A is an integer, A < min(30,x+1)
Temme/Gautschi code for Q(a,x) when x < 1
Ramanujan’s original approximation of n!
Return x^a * exp(-x) / gamma(a)
Return (z^a)(e^-z)/gamma(a), the power term prefix, using Lanczos summation Most of the error occurs in this function
Modification of Ramanujan’s approximation of n! by Sidney A. Morris
Return sign(gamma(x)), invalid for 0 or negative integer
Returns (sin (* pi x))
Return gamma(x) for x > 13
Jump to: | C D E F G I L P Q R S U |
---|
Jump to: | C D E F G I L P Q R S U |
---|
Jump to: | +
B C F G L M N S |
---|
Jump to: | +
B C F G L M N S |
---|
Jump to: | E F G L P S U |
---|
Jump to: | E F G L P S U |
---|